A code for the absolute orientation problem solved with Umeyama algorithm. Explanations, briefly.

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
"""
RALIGN - Rigid alignment of two sets of points in k-dimensional
        Euclidean space.  Given two sets of points in
        correspondence, this function computes the scaling,
        rotation, and translation that define the transform TR
        that minimizes the sum of squared errors between TR(X)
        and its corresponding points in Y.  This routine takes
        O(n k^3)-time.
Inputs:
 X - a k x n matrix whose columns are points 
 Y - a k x n matrix whose columns are points that correspond to
     the points in X
Outputs: 
 c, R, t - the scaling, rotation matrix, and translation vector
           defining the linear map TR as 

                     TR(x) = c * R * x + t
           such that the average norm of TR(X(:, i) - Y(:, i))
           is minimized.
"""
"""
Copyright: Carlo Nicolini, 2013
Code adapted from the Mark Paskin Matlab version
from http://openslam.informatik.uni-freiburg.de/data/svn/tjtf/trunk/matlab/ralign.m 
"""
import numpy as np
def ralign(X,Y):
    m, n = X.shape
    mx = X.mean(1)
    my = Y.mean(1)
    Xc =  X - np.tile(mx, (n, 1)).T
    Yc =  Y - np.tile(my, (n, 1)).T
    sx = np.mean(np.sum(Xc*Xc, 0))
    sy = np.mean(np.sum(Yc*Yc, 0))
    Sxy = np.dot(Yc, Xc.T) / n
    U,D,V = np.linalg.svd(Sxy,full_matrices=True,compute_uv=True)
    V=V.T.copy()
    #print U,"\n\n",D,"\n\n",V
    r = np.rank(Sxy)
    d = np.linalg.det(Sxy)
    S = np.eye(m)
    if r > (m - 1):
        if ( np.det(Sxy) < 0 ):
            S[m, m] = -1;
        elif (r == m - 1):
            if (np.det(U) * np.det(V) < 0):
                S[m, m] = -1  
        else:
            R = np.eye(2)
            c = 1
            t = np.zeros(2)
            return R,c,t
    R = np.dot( np.dot(U, S ), V.T)
    c = np.trace(np.dot(np.diag(D), S)) / sx
    t = my - c * np.dot(R, mx)
    return R,c,t
# Run an example test
# We have 3 points in 3D. Every point is a column vector of this matrix A
A=np.array([[0.57215 ,  0.37512 ,  0.37551] ,[0.23318 ,  0.86846 ,  0.98642],[ 0.79969 ,  0.96778 ,  0.27493]])
# Deep copy A to get B
B=A.copy()
# and sum a translation on z axis (3rd row) of 10 units
B[2,:]=B[2,:]+10
# Reconstruct the transformation with ralign.ralign
R, c, t = ralign(A,B)
print "Rotation matrix=\n",R,"\nScaling coefficient=",c,"\nTranslation vector=",t