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INTRODUCTION

GRAPH THEORY FOR BRAIN NETWORKS
2

Bullmore, Nat.Rev.Neuro. 2009
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Complex network
An informal description of a 
network with certain 
topological features, such as 
high clustering, 
small-worldness, the presence 
of high-degree nodes or hubs, 
assortativity, modularity or 
hierarchy, that are not typical 
of random graphs or regular 
lattices. Most real-life networks 
are complex by this definition, 
and analysis of complex 
networks therefore forms an 
important methodological tool 
for systems biology.

Adjacency matrix
An adjacency matrix indicates 
the number of edges between 
each pair of nodes in a graph. 
For most brain networks, the 
adjacency matrix is specified 
as binary — that is, each 
element is either 1 (if there is 
an edge between nodes) or 0 
(if there is no edge). For 
undirected graphs the 
adjacency matrix is 
symmetrical.

Box 1 | Structural and functional brain networks

Structural and functional brain networks can be explored using graph theory through the following four steps (see the figure):
•	Define the network nodes. These could be defined as electroencephalography or multielectrode-array electrodes, or as 

anatomically defined regions of histological, MRI or diffusion tensor imaging data.

•	Estimate a continuous measure of association between nodes. This could be the spectral coherence or Granger causality 
measures between two magnetoencephalography sensors, or the connection probability between two regions of an 
individual diffusion tensor imaging data set, or the inter-regional correlations in cortical thickness or volume MRI 
measurements estimated in groups of subjects.

•	Generate an association matrix by compiling all pairwise associations between nodes and (usually) apply a threshold to 
each element of this matrix to produce a binary adjacency matrix or undirected graph.

•	Calculate the network parameters of interest in this graphical model of a brain network and compare them to the 
equivalent parameters of a population of random networks.

Each step entails choices that can influence the final results and must be carefully informed by the experimental question. 
At step 1, parcellation schemes can use prior anatomical criteria or be informed by the functional connectivity profiles of 
different regions. Several such parcellation schemes may be available and can affect network measures147. In most magneto-
encephalography and electroencephalography studies, network nodes are equivalent to individual electrodes or sensors, 
but networks could also be based on reconstructed anatomical sources. However, some reconstruction algorithms will 
determine the brain location of each source by minimizing the covariance between sensors, which has major effects on the 
configuration of functional networks. At step 2, a range of different coupling metrics can be estimated, including measures 
of both functional and effective connectivity. A crucial issue at step 3 is the choice of threshold used to generate an 
adjacency matrix from the association matrix: different thresholds will generate graphs of different sparsity or connection 
density, and so network properties are often explored over a range of plausible thresholds. Finally, at step 4 a large number of 
network parameters can be quantified (BOX 2). These must be compared with the (null) distribution of equivalent parameters 
estimated in random networks containing the same number of nodes and connections. Statistical testing of network 
parameters may best be conducted by permutation- or resampling-based methods of non-parametric inference given the 
lack of statistical theory concerning the distribution of most network metrics.

Most graph theoretical network studies to date have used symmetrical measures of statistical association or functional 
connectivity — such as correlations, coherence and mutual information — to construct undirected graphs. This approach 
could be generalized to consider asymmetrical measures of causal association or effective connectivity — such as Granger 
causal148,149 or dynamic causal66 model coefficients — to construct directed graphs. It is also possible to avoid the 
thresholding step (step 3) by analysing weighted graphs that contain more information than the simpler unweighted and 
undirected graphs that have been the focus of attention to date. Structural brain network image is reproduced from 
REF. 59. Functional brain network image is reproduced, with permission, from REF. 70  (2006) Society for Neuroscience.
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MOTIVATIONS

FUNCTIONAL BRAIN NETWORKS
3

 A mirror over the living brain. 

 Clinically important biomarker. 

 Aberrant connectivity is observed in many diseases. 

 Modular structure of FC connectivity. 

 Graph theoretical community detection unveils the mesoscopic 
organization of functional connectivity.



MODULAR STRUCTURE IN THE BRAIN

WHY LOOKING FOR MODULES IN THE BRAIN?
4

 “Nearly decomposable systems” are faster to adapt and evolve in a  
changing environment [Simon 1962]. 

 Confers stability against abrupt external changes (lesions). 

 Allows for functional segregation and integration. 

 Coevolution of structural and functional connectivity.

Kaiser, Front.Neuroinf. [2010] 



MODULARITY

NEWMAN-GIRVAN MODULARITY
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Observed fraction intracluster edges Expected fraction of intracluster edges

1 if node i and node j in the same community

Newman, 2006



MODULARITY

MOST USED QUALITY FUNCTION FOR COMMUNITY DETECTION
6

But it has some problems: 

 Resolution limit: 
 Inability to detect communities smaller than a certain scale. 

 Degeneracy:  
 Many high Q solutions are different. 

Good et al, PRE, 2010



PROBLEMS

RESOLUTION LIMIT: AN EXAMPLE
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Ground truth 
partition

Maximum modularity 
partition

Original network
Adapted from Traag, 2011



ANOTHER ISSUE

DEGENERACY
8

Degeneracy landscape of a k=24, n=5 ring of cliques. 

Curvilinear components 
analysis. 

Red points are solutions. 

Distance embedding.

Adapted from Good et al. (2008)



NOT ONLY MODULARITY IS AFFECTED

RESOLUTION LIMIT
9

Resolution limit is an almost ubiquitous phenomenon: 

 Resolution parameter ɣ  [Arenas 2008, Reichardt 2006]  
  only shifts the problem at different scales. 

 It depends on Modularity, not on the heuristic. 

 In Infomap depends on intercluster edges [Kawamoto 2015]. 

 Global parameters? Resolution limit kicks in [Fortunato 2016].



EFFECTS

REAL WORLD EFFECTS OF RESOLUTION LIMIT
10

 Resting state group average over 27 healthy subjects. 

 4 modules found by modularity maximization.

Crossley, 2013
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We need to move this limit away.



SURPRISE
11INTRODUCING SURPRISE
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Aldecoa, Sci.Rep. 2011

p-value of a Fisher exact test based on urn model. 

Measures how surprising is to observe that the intracluster density              
is the same as graph density. 

The higher Surprise, the better the clustering.  

Attention to the statistical significance of the partitioning.



SURPRISE

URN MODEL
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p total balls, pξ yellow  and p-pξ red. 

Pick m marbles, randomly, what is the probability of having at least mξ 

yellow balls?

Intercluster pairsIntracluster pairs

p ballsm balls

pξp-pξ

mξm-mξ

Every marble is a node pair.



PROPERTIES

RESOLUTION LIMIT AND SURPRISE
13
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can exceed Qα when the number of internal edges m1 and m2 is small compared with the total number of edges 
in the graph m, thus preventing detection of small communities even when they are complete graphs or cliques. 
Subsequently, other authors have extended this analysis showing that the resolution limit affects a number of 
other community detection algorithms, and suggesting that the problem may be quite generally related with the 
use of non-local fitness functions9,14–16.

The resolution limit first highlighted by Fortunato and Barthelemy may be particularly critical for the analy-
sis of brain connectivity networks. By way of example, certain functional processes, like color vision, have been 
described as anatomically localized29, while others, like working memory, have been proposed to involve more 
globally integrated processing systems30. Hence, we may expect the brain modular structure to comprise hetero-
geneously distributed communities.

Whether the relatively uniform modular structure of brain connectivity, highlighted by Newman’s Modularity 
and other community detection methods in many studies, reflects the true architecture of the brain organization 
or is the result of the resolution limit is still unclear. Hierarchical approaches have shown that large modules can 
be further subdivided, indicating that connectivity networks show structure at different spatial scales31. However, 
these findings do not provide information on the optimal partition of the network, i.e. the optimal cut through 
the dendrogram representing connectivity at the different scales. To this end, an optimization method that does 
not suffer from the resolution limit would be needed.

Unfortunately, the resolution limit appears to be an intrinsic feature of many methods that optimize global 
quality functions, and there appears to be “a narrow scope to resolution-limit-free methods”14. Surprise has 
been shown to outperform other network partitioning methods in the detection of small features within large 
graphs, but the extent to which it suffers from the resolution limit is unknown24–26. As pointed out by24, while 
Modularity-based methods define a community as a region with an unexpectedly high density of links with 
respect to the global characteristics of the network, Surprise weights the number of actual intracluster edges 
against the maximum number of links given the nodes in the clusters. Hence, Surprise is able to discriminate local 
subnetworks whose internal density is close to that of a clique independently of their size. In the following, we 
assess the extent to which the resolution limit may affect Surprise.

Firstly, we have directly compared Newman’s Modularity and Surprise in the example of Fortunato and 
Barthelemy. For the sake of illustration, we have defined G1 and G2 as two identical cliques of 5 nodes connected 

Figure 1. Analysis of the onset of the resolution limit for Modularity and Surprise in a model graph (A) 
consisting of two cliques, G1 and G2, and a size-varying components G0. The red line indicates the partition 
α, with G1 and G2 as different modules, and the blue line the partition β, with G1 and G2 merged into a single 
module. The graph (B) shows the difference in Modularity for increasing number of edges in G0. The same is 
shown in (C) for Surprise.
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can exceed Qα when the number of internal edges m1 and m2 is small compared with the total number of edges 
in the graph m, thus preventing detection of small communities even when they are complete graphs or cliques. 
Subsequently, other authors have extended this analysis showing that the resolution limit affects a number of 
other community detection algorithms, and suggesting that the problem may be quite generally related with the 
use of non-local fitness functions9,14–16.

The resolution limit first highlighted by Fortunato and Barthelemy may be particularly critical for the analy-
sis of brain connectivity networks. By way of example, certain functional processes, like color vision, have been 
described as anatomically localized29, while others, like working memory, have been proposed to involve more 
globally integrated processing systems30. Hence, we may expect the brain modular structure to comprise hetero-
geneously distributed communities.

Whether the relatively uniform modular structure of brain connectivity, highlighted by Newman’s Modularity 
and other community detection methods in many studies, reflects the true architecture of the brain organization 
or is the result of the resolution limit is still unclear. Hierarchical approaches have shown that large modules can 
be further subdivided, indicating that connectivity networks show structure at different spatial scales31. However, 
these findings do not provide information on the optimal partition of the network, i.e. the optimal cut through 
the dendrogram representing connectivity at the different scales. To this end, an optimization method that does 
not suffer from the resolution limit would be needed.

Unfortunately, the resolution limit appears to be an intrinsic feature of many methods that optimize global 
quality functions, and there appears to be “a narrow scope to resolution-limit-free methods”14. Surprise has 
been shown to outperform other network partitioning methods in the detection of small features within large 
graphs, but the extent to which it suffers from the resolution limit is unknown24–26. As pointed out by24, while 
Modularity-based methods define a community as a region with an unexpectedly high density of links with 
respect to the global characteristics of the network, Surprise weights the number of actual intracluster edges 
against the maximum number of links given the nodes in the clusters. Hence, Surprise is able to discriminate local 
subnetworks whose internal density is close to that of a clique independently of their size. In the following, we 
assess the extent to which the resolution limit may affect Surprise.

Firstly, we have directly compared Newman’s Modularity and Surprise in the example of Fortunato and 
Barthelemy. For the sake of illustration, we have defined G1 and G2 as two identical cliques of 5 nodes connected 

Figure 1. Analysis of the onset of the resolution limit for Modularity and Surprise in a model graph (A) 
consisting of two cliques, G1 and G2, and a size-varying components G0. The red line indicates the partition 
α, with G1 and G2 as different modules, and the blue line the partition β, with G1 and G2 merged into a single 
module. The graph (B) shows the difference in Modularity for increasing number of edges in G0. The same is 
shown in (C) for Surprise.

Nicolini, 2016a
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PROPERTIES

NO DEGENERACY
14

Nicolini, ArXiv 2016

Degeneracy landscape of a k=24, n=5 ring of cliques. 

Curvilinear components 
analysis. 

Red points are solutions. 

Distance embedding.



OPTIMIZATION

APPLICATION OF SURPRISE OPTIMIZATION
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Material). Despite the fact that these methods retrieve a few more modules that Newman Modularity, they fail to 
capture the heterogeneous distribution of clusters revealed by Surprise.

In order to assess the significance in neurofunctional terms of the finer partitions obtained by Surprise, we 
show the node distribution as an overlay of the MNI brain atlas template for the 10 largest modules of the resting 
state network in Fig. 4. The communities highlighted by Surprise show a correspondence with some well known 
functional networks previously identified by multivariate analysis (e.g. Independent Component Analysis) of 
functional MRI data43–46, and with well defined, segregated anatomical or functional districts.

The largest communities of the resting state network correspond to the primary sensorimotor cortex47, pri-
mary visual and extra-striate visual network, fronto-parietal lateralized networks39 as well as the so-called default 
mode network (DMN)43,48. The attentional frontoparietal networks (FPAN)49 were detected as two separate, later-
alized subnetworks, in agreement with46 although other studies have identified a single, bilateral FPAN50.

Smaller networks, like the executive control and auditory networks44,51 were also resolved by Surprise, as well 
as subcortical structures, like the hippocampal and thalamic formations52,53. Interestingly, the thalamic nuclei 
appear as one tight community, despite the fact that they are structurally unconnected, in keeping with the idea 
that functional connectivity does not necessarily require the presence of strong structural links.

The more accurate partition afforded by Surprise may enable identification of differences in the modular 
structures of networks that cannot be appreciated with a resolution limited method. By way of example, we have 
compared the partitions of the resting state and coactivation networks (Fig. 5). Indeed, these networks are of a dif-
ferent nature, the former representing intrasubject baseline fluctuations in the brain’s resting state, and the latter 
the responses to a variety of different tasks across subjects. However, Newman’s Modularity finds similar parti-
tions for these two networks, with 4 large modules each. Conversely, under Surprise maximization, the partition 
of the resting state network shows many more small communities comprising less than 5 nodes (32 in total) com-
pared with the coactivation one (only 11). Moreover, certain communities of the resting state network appeared 
to be split into smaller modules in the coactivation matrix. By way of example, the cuneus and the lingual and 
pericalcarine gyri were part of the occipital visual module in the resting state, but not in the coactivation network, 
where they formed a separate community (first row of Fig. 5). Similarly, the precuneus and medial parts of the 
postcentral girus were identified as an independent community in the coactivation network, while they were part 
of the broad somatosensory network in the resting state connectivity graph54 (second row of Fig. 5). Interestingly, 
the Broca area, indicated as Module 11 in Fig. 5, was separated from the auditory network in the coactivation 
network, and identified as a small, but anatomically and functionally distinct, community. Conversely, other 
communities were split in the resting state but not in the coactivation network. The executive and attentional con-
trol networks were merged into a large community in the coactivation network, while they were separated under 
resting state conditions, including a subdivision of the left and right fronto-parietal networks (third row of Fig. 5).

While the resting state and coactivation networks appeared to possess virtually identical modular structures 
under Newman’s analysis, they showed functionally and anatomically relevant differences when analyzed by 
Surprise maximization, with a Normalized Mutual Information between the partitions of the two networks of 
0.5922. Indeed, Modularity tends to assign small communities to larger structures even when they correspond 
to tightly knit modules, thus concealing differences in the graphs’ modular structures that involve aggregation or 
disaggregation of smaller clusters. It is conceivable that the detrimental effects arising from the resolution limit 
may have affected previous studies comparing different populations5. Surprise may offer a sharper tool to detect 
alterations of brain connectivity induced, for example, by psychiatric or neurological conditions, thus enabling 
the exploration of novel markers of brain disease.

Besides the exploration of functional and anatomical segregation, understanding the modular structure of 
brain networks is critical for the interpretation and classification of the roles played by the nodes within the 
network structure55. Highly connected nodes, or hub nodes, are particularly important for their topological 

Figure 4. The ten largest modules found by Surprise in the resting state network overlaid on an MRI brain 
template. The module indexes are ordered by decreasing size. The modules are named after corresponding 
functional networks previously identified by multivariate analysis of resting state fMRI data.

Modularity

Surprise

Basal



SURPRISE FOR WEIGHTED GRAPHS

ASYMPTOTICAL SURPRISE
16
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FIG. 2. (Color online) Approximation of surprise. The asymp-
totic formulation of surprise, using the KL divergence, approximates
well both the binomial and the hypergeometric surprise. The inset
shows the approximation ratio Sasym/Shyper and Sasym/Sbinom, both
going to 1 for large graphs.

community sizes nc = 10 and vary the number of communities
r . In the second test, we have fixed the number of communities
to 2 but vary the community size nc from 10 to 500. We
consider whether the planted partition remains optimal by
analyzing the quality of the planted partition Splt (or Qplt
for modularity) and the partition found through optimization
S (or Q for modularity). Whenever Splt < S we thus know
that the planted partition remains no longer optimal. The
results shown in Fig. 3 clearly confirm our theoretical analysis.
In the case that r → ∞ with fixed nc, surprise does well,
whereas (ER) modularity suffers from the resolution limit.
In the case where r is fixed to r = 2, but nc → ∞, surprise
does less well, as it tends to find subgraphs within the two
large communities. Modularity also has problems identifying
the optimal bisection. Indeed, the uncovered partitions do
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FIG. 4. (Color online) Inequalities. In most cases significance is
more discriminative than surprise, which is more discriminative than
the ER modularity, so that Z > S > QER. These inequalities clearly
hold over the whole range of the mixing parameter µ for LFR
benchmarks (n = 104). For ER modularity we display 2mQ2

ER, as
used in Eq. (14).

not coincide exactly with the planted partition, even though
the modularity value remains rather similar. Such partitions
are likely to occur because of the degeneracy of modularity
[20]. Nonetheless, our results show that the modularity of the
planted partition remains (nearly) optimal, whereas surprise
for the planted partition clearly diminishes compared to
surprise of the uncovered partitions.

We also tested the various methods more extensively using
benchmark graphs with a more realistic community size and
degree distribution [46]. We set the average degree ⟨k⟩ = 20
while the maximum degree is 50 and follows a power law
degree distribution with exponent 2. Planted community sizes
range from 10 to 50 for the “small” communities and from
20 to 100 for “large” communities. The planted community
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FIG. 3. (Color online) Limitations on community detection. We construct graphs with a planted partition, with a probability of an edge
between communities of µ = 0.1. We show the quality ratio S

Splt
between the quality of the partition found by optimization S and the quality

of the planted partition Splt (and similarly for ER modularity). Hence, if the quality ratio S
Splt

> 1, the planted partition is no longer optimal.
In the figure on the left we consider the case for fixed community size nc = 10, but increase the number of communities r . The results show
that in this case surprise finds the planted partitions, whereas ER modularity has more difficulties, in line with our analysis. This is mostly due
to the resolution limit in modularity, which underestimates the number of communities. In the figure on the right we consider the case of a
fixed number of communities r = 2 but an increasing community size nc. In this case, surprise quickly finds other partitions than the planted
partition, whereas modularity remains closer to the planted partition, consistent with our analysis. This is mostly because surprise tends to find
substructure in the rather large communities arising from random fluctuations, which thus overestimates the number of communities. However,
modularity also has some difficulty in finding the planted partition. This figure shows the average over five replications for each setting, and
the error bars show the standard deviation.
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Traag, 2015



A LOGIC QUESTION

COMPARING ASYMPTOTICAL SURPRISE WITH OTHER METHODS
17

How to make fair comparison on brain networks if we don’t 
have the brain networks community structure?
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Complex network
An informal description of a 
network with certain 
topological features, such as 
high clustering, 
small-worldness, the presence 
of high-degree nodes or hubs, 
assortativity, modularity or 
hierarchy, that are not typical 
of random graphs or regular 
lattices. Most real-life networks 
are complex by this definition, 
and analysis of complex 
networks therefore forms an 
important methodological tool 
for systems biology.

Adjacency matrix
An adjacency matrix indicates 
the number of edges between 
each pair of nodes in a graph. 
For most brain networks, the 
adjacency matrix is specified 
as binary — that is, each 
element is either 1 (if there is 
an edge between nodes) or 0 
(if there is no edge). For 
undirected graphs the 
adjacency matrix is 
symmetrical.

Box 1 | Structural and functional brain networks

Structural and functional brain networks can be explored using graph theory through the following four steps (see the figure):
•	Define the network nodes. These could be defined as electroencephalography or multielectrode-array electrodes, or as 

anatomically defined regions of histological, MRI or diffusion tensor imaging data.

•	Estimate a continuous measure of association between nodes. This could be the spectral coherence or Granger causality 
measures between two magnetoencephalography sensors, or the connection probability between two regions of an 
individual diffusion tensor imaging data set, or the inter-regional correlations in cortical thickness or volume MRI 
measurements estimated in groups of subjects.

•	Generate an association matrix by compiling all pairwise associations between nodes and (usually) apply a threshold to 
each element of this matrix to produce a binary adjacency matrix or undirected graph.

•	Calculate the network parameters of interest in this graphical model of a brain network and compare them to the 
equivalent parameters of a population of random networks.

Each step entails choices that can influence the final results and must be carefully informed by the experimental question. 
At step 1, parcellation schemes can use prior anatomical criteria or be informed by the functional connectivity profiles of 
different regions. Several such parcellation schemes may be available and can affect network measures147. In most magneto-
encephalography and electroencephalography studies, network nodes are equivalent to individual electrodes or sensors, 
but networks could also be based on reconstructed anatomical sources. However, some reconstruction algorithms will 
determine the brain location of each source by minimizing the covariance between sensors, which has major effects on the 
configuration of functional networks. At step 2, a range of different coupling metrics can be estimated, including measures 
of both functional and effective connectivity. A crucial issue at step 3 is the choice of threshold used to generate an 
adjacency matrix from the association matrix: different thresholds will generate graphs of different sparsity or connection 
density, and so network properties are often explored over a range of plausible thresholds. Finally, at step 4 a large number of 
network parameters can be quantified (BOX 2). These must be compared with the (null) distribution of equivalent parameters 
estimated in random networks containing the same number of nodes and connections. Statistical testing of network 
parameters may best be conducted by permutation- or resampling-based methods of non-parametric inference given the 
lack of statistical theory concerning the distribution of most network metrics.

Most graph theoretical network studies to date have used symmetrical measures of statistical association or functional 
connectivity — such as correlations, coherence and mutual information — to construct undirected graphs. This approach 
could be generalized to consider asymmetrical measures of causal association or effective connectivity — such as Granger 
causal148,149 or dynamic causal66 model coefficients — to construct directed graphs. It is also possible to avoid the 
thresholding step (step 3) by analysing weighted graphs that contain more information than the simpler unweighted and 
undirected graphs that have been the focus of attention to date. Structural brain network image is reproduced from 
REF. 59. Functional brain network image is reproduced, with permission, from REF. 70  (2006) Society for Neuroscience.
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GENERATE A NETWORK 
WITH GIVEN COMMUNITY 

STRUCTURE
LFR Model

Figures

B

Figure 1: The two benchmark networks used in this study, laid out. (A) is a
power-law ring of cliques, where cliques present different sizes sampled from
a power-law distribution; (B) is the layout of an LFR network with parameters
N = 600, hki = 12, maxk = 50, µt = 0.1, µw = 0.1, minc = 5, maxc = 50. The
layout of (B) was generated with the graph-tool library [59].
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COMPARISON

COMPARING COMMUNITY DETECTION ON BRAIN NETWORKS
18

 Varied SNR=<S>/σn and number of  subjects. 

 Normalized Mutual Information (NMI) 

Matrix Cij is the number of nodes in the planted community-i appearing 
in the detected community-j.  

 Sensitivity (Recall) = TP/(TP + FN)  

 Specificity =  TN/(TN + FP)
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APPLICATION

HUMAN RESTING STATE DATE
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ENDING

CONCLUSIONS
21

 Functional connectivity can be studied with graph-theoretical 
approaches. 

 Resolution limit hindered detection of functional modules. 

 Coarse resolution hides small details and differences between groups. 

 Asymptotical Surprise can identify neurofunctionally plausible and 
anatomically well-defined substructures. 

But … 

 It may overfit the community structure due to its improved sensitivity.
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