COMMUNITY DETECTION IN BRAIN FUNCTIONAL NETWORKS BEYOND THE RESOLUTION LIMIT

CARLO NICOLINI, CÉCILE BORDIER AND ANGELO BIFONE

Center for Neuroscience and Cognitive Systems, Istituto Italiano di Tecnologia, Rovereto, Italy University of Verona, Italy

ISTITUTO ITALIANO DI TECNOLOGIA

brainetlab.github.io

arvix.org/1609.04316

INTRODUCTION

GRAPH THEORY FOR BRAIN NETWORKS

FUNCTIONAL BRAIN NETWORKS

- A mirror over the living brain.
- Clinically important biomarker.
- Aberrant connectivity is observed in many diseases.
- Modular structure of FC connectivity.
- Graph theoretical community detection unveils the mesoscopic organization of functional connectivity.

WHY LOOKING FOR MODULES IN THE BRAIN?

- "Nearly decomposable systems" are faster to adapt and evolve in a changing environment [Simon 1962].
- Confers stability against abrupt external changes (lesions).
- Allows for functional segregation and integration.
- Coevolution of structural and functional connectivity.

NEWMAN-GIRVAN MODULARITY

Observed fraction intracluster edges

1 if node i and node j in the same community

Expected fraction of intracluster edges

- Based on a null configuration model
- Same degree sequence
- Randomly rewired

Newman, 2006 Zachary, 1977

MOST USED QUALITY FUNCTION FOR COMMUNITY DETECTION

But it has some problems:

Resolution limit:

Inability to detect communities smaller than a certain scale.

Degeneracy:

Many high Q solutions are different.

PROBLEMS

RESOLUTION LIMIT: AN EXAMPLE

Original/laction chtrdtharity partition

Adapted from Traag, 2011

ANOTHER ISSUE

DEGENERACY

▶ Degeneracy landscape of a k=24, n=5 ring of cliques.

RESOLUTION LIMIT

Resolution limit is an almost ubiquitous phenomenon:

- Resolution parameter y [Arenas 2008, Reichardt 2006] only shifts the problem at different scales.
- ▶ It depends on Modularity, not on the heuristic.
- ▶ In Infomap depends on intercluster edges [Kawamoto 2015].
- Global parameters? Resolution limit kicks in [Fortunato 2016].

REAL WORLD EFFECTS OF RESOLUTION LIMIT

- Resting state group average over 27 healthy subjects.
- 4 modules found by modularity maximization.

$$m_c \ge \sqrt{\frac{m}{2}}$$

We need to move this limit away.

SURPRISE

$$S = -\log_{10} \sum_{i=m_{\zeta}}^{m} \frac{\binom{p_{\zeta}}{i} \binom{p-p_{\zeta}}{m-i}}{\binom{p}{m}}$$

- p-value of a Fisher exact test based on urn model.
- Measures how surprising is to observe that the intracluster density is the same as graph density.
- The higher Surprise, the better the clustering.
- Attention to the statistical significance of the partitioning.

URN MODEL

p total balls, p_{ξ} yellow and $p-p_{\xi}$ red.

Pick m marbles, randomly, what is the probability of having at least m_{ξ} yellow balls?

mξ

m balls

m-m_ξ

Every marble is a node pair.

Intracluster pairs Intercluster pairs

p balls

RESOLUTION LIMIT AND SURPRISE

Nicolini, 2016a

PROPERTIES

NO DEGENERACY

▶ Degeneracy landscape of a k=24, n=5 ring of cliques.

Nicolini, ArXiv 2016

OPTIMIZATION

APPLICATION OF SURPRISE OPTIMIZATION

Modularity

ASYMPTOTICAL SURPRISE

$$S_a = mD_{\mathrm{KL}} \left(\frac{m_{\zeta}}{m} \| \frac{p_{\zeta}}{p}\right)$$

- Asymptotical approximation valid for large n.
- Information theoretic distributions pseudo-distance.
- Information gained.
- Supports weighted graphs.

Traag, 2015

GET PARTITION

SIMILARITY WITH THE

PLANTED ONE

COMPARING ASYMPTOTICAL SURPRISE WITH OTHER METHODS

How to make fair comparison on brain networks if we don't have the brain networks community structure?

RUN COMMUNITY

DETECTION TO ASSESS

EFFECTS OF NOISE

neuroSim R package

Rician distribution

Fisher Transformation

Surprise, Infomap, Modularity

NMI

GRAPH CREATION

VIRTUAL SUBJECTS

SIMULATE RS BOLD

SIGNALS FOR MANY

INJECT CORRELATION INTO SYNTHETIC TIME SERIES

ADD REALISTIC NOISE TO TIME SERIES my month marchan

Mon Man Jahr

COMPARING COMMUNITY DETECTION ON BRAIN NETWORKS

- ▶ Varied SNR=<S>/ σ_n and number of subjects.
- Normalized Mutual Information (NMI)
- Matrix C_{ij} is the number of nodes in the planted community-i appearing in the detected community-j.
 Planted communities

TP

FP

FN

TN

- Sensitivity (Recall) = TP/(TP + FN)
- Specificity = TN/(TN + FP)

Nb of subjects ◆ 1 ◆ 20 ◆ 40 ◆ 60 ◆ 80

APPLICATION

HUMAN RESTING STATE DATE

Attentional

В

G

Orbitofrontal

Auditory

Fronto-opercular

Executive

Parietal Inferior

Hippocampal

CONCLUSIONS

- Functional connectivity can be studied with graph-theoretical approaches.
- Resolution limit hindered detection of functional modules.
- Coarse resolution hides small details and differences between groups.
- Asymptotical Surprise can identify neurofunctionally plausible and anatomically well-defined substructures.

But ...

It may overfit the community structure due to its improved sensitivity.

THANK YOU!

Angelo Bifone

Cecile Bordier

REFERENCES

Nicolini C., Bifone A. Scientific Reports 6, 19250, (2016)

Nicolini C., Bordier C., Bifone A. Arvix 1609.04316 arvix.org/1609.04316